
00

D'El
OF~ ~ M4PR291990aIn

AFIT/EN-TR-90-1

Air Force Institute of Technology

An Abstract Data Model for the

IDEFo Graphical Analysis Language

Gerald R. Morris Thomas C- Hartrum Mark A. Roth

Capt, USAF Maj, USAF

DITRIBU'~f TATEMET

DPA Approved for public release;DEPARTMENT OF THE AIR FORCE Distribution United

AIR UNIVERSITY I

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

03 9P IR

Accession For

NTIS GRA&I

DTIC TAB
Unannounced []

UNCLASSIFIED Justification

By
Distribution/

Availability CodeV

Avail and/or
Dist Special

Artr

AFIT/EN-TR-90-1

Air Force Institute of Technology

An Abstract Data Model for the

IDEF0 Graphical Analysis Language

Gerald R. Morris Thomas C. Hartrum Mark A. Roth
Capt, USAF Maj, USAF

January 11, 1990

Approved for public release; distribution unlimited Q T IC
' ' 9~ I

An Abstract Data Model for the
IDEF0 Graphical Analysis Language

Gerald R. Morris, Thomas C. Hartrum, and Mark A. Roth

Department of Electrical and Computer Engineering (AFIT/ENG)
Air Force Institute of Technology

Wright-Patterson AFB, OH 45433-6583

Abstract

IDEF4 is the United States Air Force's ICAM (Integrated Computer Aided Manufacturing) Definition
Method Zero graphical analysis language, a subset of Ross' Structured Analysis (SA) language. The
language is also an excellent methodology for performing a requirenmnts-phase analysis for any software
development project. We present an abstract data model for IDEFG using entity-relationship diagrams.
This model helps to mitigate some of the ambiguities inherent in IDEF0. The model is divided into two
parts representing the analysis data (the essential data model) and the graphical data (the drawing data
model). This dual modeling approach allows for the extraction of analysis data without having to deal
explicitly with the IDEFo graphical language. -

Categories and Subject Descriptors: D.2.1 [Softwsre Engineering]: Requirements/Specifications-
languages, methodologies, tools; H.2.1 [Database Managesuent]: Logical Design-data models

General Terms: Languages .
Additional Key Words and.h "tatmodel, structured analysis, graphical analysis language

1 Introduction

\ Computer aided software engineering (CASE) represents a set of analysis, design and maintenance method-

ologies for software and a set of computer-based tools to help automate those methodologies. The Department

of Defense is especially interested in how CASE can help reduce the tremendous cost and time needed to

develop and maintain very complex software which is embedded in nearly every system under development

today. In this article we discuss a particular graphical software analysis language, the United States Air

Force's ICAM (Integrated Computer Aided Manufacturing) Definition Method Zero (IDEFo) subset [8] of

Ross' Structured Analysis (SA) [9]. ICAM is the Air Force's program for integrated computer aided manu-

facturing. It is directed towards increasing manufacturing productivity via computer technology. Although

the original intent of the IDEFO language was to provide a structured approach for computer aided manufac-

I

turing processes, the language is also an excellent methodology for performing a requirements-phase analysis

for any software development project.

One of the problems with both SA and IDEF0 is that there is no formal model of the language. In addition

to "blueprint-like graphics," SA and IDEF0 call for the use of natural language [9]. By definition, the use of

natural language introduces ambiguity in the overall IDEF0 language. In addition, certain graphical features

of IDEF0 allow for ambiguous models to be constructed. One approach to reducing such ambiguity is to

replace or augment free-form text with a more syntactically defined data dictionary. Providing a consistent

database for a CASE tool, however, requires a data structure that integrates the graphics, text, and data

dictionary aspects of the IDEF0 analysis.

In this article, we present an abstract data model for the IDEF0 language. This model helps to mitigate

some of the ambiguities inherent in the IDEF0 language by providing a formal specification of the language

elements. We take the unique approach of separating the analysis data and the graphical data into separate

data models, the esseniial and drawing data models, respectively. This dual modeling approach allows for

the extraction of analysis data without having to deal explicitly with the IDEF0 graphical language. Thus,

the analysis data can be used in an environment that doesn't support the graphical tools of IDEFO or used

with another graphical tool that supports a similar analysis methodology.

The remainder of this article is organized as follows. First, we provide introductions to SA and IDEF0

and how IDEFO is used at the Air Force Institute of Technology (AFIT). We then discuss briefly the role

of database management systems in CASE tools and our adaptation of Chen's entity-relationship model [2].

Finally, we present our abstract data model for IDEFa.

2 Structured Analysis and IDEF 0

In his 1976 paper, Douglas Ross introduced Structured Analysis as a generalized language, which allows

a complex idea to be represented in a hierarchical, top-down representation [9]. According to Ross, "The

human mind can accommodate any amount of complexity as long as it is presented in easy-to-grasp chunks

that are structured together to make the whole" [9:17]. SA combines graphic features such as lines and

boxes with standard written language to create the SA model. Figure 1 illustrates the basic idea behind this

2

.A-0 diagram

details

AO diagram

A3 diagram

A32 diagram

Figure 1: Structured Decomposition (Based on [9:18])

structured decomposition. At each level, only the details essential for that level are given. Further details

are exposed by moving down in the hierarchy.

SA provides for two kinds of decomposition, an activity decomposition, and a data decomposition. In

the activity decomposition, activities (verbs) are represented by rectangular boxes, And the data (nouns) are

represented by arrows flowing into and out of the boxes. In the data decomposition, the boxes represent data

(nouns), and the arrows represent activities operating on the data in the boxes. An example of an activity

decomposition is shown in the following two figures. Figure 2 represents the overall context of the system

being analyzed (referred to as the "A minus zero" diagram).

3

AUTHOR: Gerald R. Morris IDATE:14Feb89 READER:
PROJECT: DM Example]REV:I.0 DATE:

userdatafe ac

AO

El an example decomposition
not completed

NODE: TITLE: Data Manager NUMBER:
A-0 GRM-1

Figure 2: A-0 Diagram

Figure 3 represents the first level decomposition. In a real analysis, the AO diagram would be further

decomposed to whatever level was necessary to ensure an unambiguous interpretation of the system require-

ments. Marca and McGowan have written an excellent book which describes SADT 1 and provides numerous

workshop-style examples with which users can develop a flavor for the language [7].

A full implementation of SA includes 40 different language features, and the dual decomposition [9:20].

But the United States Air Force Program for Integrated Computer Aided Manufacturing (ICAM), which is

directed towards increasing manufacturing productivity via computer technology, defined a subset of Ross'

Structured Analysis language called ICAM Definition Method Zero (IDEFo) [8]. This functional modeling

language eliminates some of the more esoteric features of Ross' language, as well as the data decomposition.

According to the IDEF0 manual

1 Structured Analysis and Design Technique (SADT) is SofTech's name for SA and is a registered trademark

4

AUTHOR: Gerald R. Morris IDATE:14Feb89 READER:
PROJECT: DM Example |REV:1.0 DATE: I I

rules

C1 lnumberrules alpharules

userdata unumberr numbermsgs

1 U
01

alphamsgs
"manage

ualpha 1alpha
[data 2

NODE: TITLE: manage database NUMBER:
AO IIGRM-2

Figure 3: AO Diagram

The ICAM program approach is to develop structured methods for applying computer tech-
nology to manufacturing and to use those methods to better understand how best to improve
manufacturing productivity. ... IDEF0 is used to produce a function model which is a structured
representation of the functions of a manufacturing system or environment, and of the information
and objects which interrelate those functions. [8:1-1]

One of the problems with both SA and IDEF0 is that there is no formal model of the language. In

addition to "blueprint-like graphics," SA and IDEF0 call for the use of natural language [9]. The use of such

natural language, by definition, introduces ambiguity in the overall IDEFo language. In addition, certain

graphical features of IDEFO allow for ambiguous models to be constructed. In short, IDEFO is not a rigorous

language.

Obviously, the original intent of the IDEF0 language was to provide a structured approach for com-

puterizing manufacturing processes. However, as a subset of SA, the language also provides an excellent

methodology for performing a requirements-phase analysis for software development projects. It is precisely

this use of IDEFO which was the motivation for developing the model presented in this article.

5

3 AFIT and IDEF0

At the Air Force Institute of Technology (AFIT) Department of Electrical and Computer Engineering we have

promulgated a set of system development guidelines and standards which encourage consistency throughout

all phases of hardware and software systems development [5]. As part of this standard, and in conjunction

with ongoing efforts to utilize computer aided software engineering (CASE) in our software engineering

curriculum, we have selected IDEF 0 for performing systems analyses. We have extended the IDEF0 language

to include a data dictionary, which is AFIT's implementation of and improvement over the glossary called

for by IDEF0 . It provides not only the glossary, but also a more syntactical representation of some of the

ambiguous features of the language. Several CASE tools have been developed to assist AFIT students during

software development. Of particular interest is a tool called SAtool, based on the IDEF0 language, which

allows a software engineer to perform an analysis of software requirements [6].

SAtool, which runs on a Sun workstation, is a graphics based editor which allows the analyst to draw

the diagrams and enter portions of the data dictionary for the requirements analysis phase of software

development. The remaining elements of the data dictionary are automatically derived from the diagram.

The user can generate a printout of the SA diagram, a so-called facing-page text printout, and a hard-copy

printout of the data dictionary. The analysis results can be saved in a standard data file for uploading into a

common database. The tool also saves the graphical drawing information so the user can recall the diagram

for editing. Figure 4 illustrates some of the SAtool products.

The standard data file generated by SAtool can be uploaded into AFIT's common database. According

to Connally, the goal of the common database system is to

provide an integrated system in which a designer could sit down at a workstation, download
the necessary data from a central database, work on a portion of the design, and when finished,
upload the data back to the database. [3:2]

Many CASE tool vendors, however, do not use database technology in the development of their products.

Typically they create some flat file to save all the information generated by the tool. In other tools even

though a DBMS is provided, a direct interface to the database is not provided.

The AFIT SAtool is no exception. In order to save the SAtool data in the AFIT common database,

the tool is forced to "walk" the diagram and extract the required information. The user then uploads this

standard data file onto the central system which contains the common database and, via Connally's interface,

6

diagrams data dictionary

facing page text
standard data file

graphics file

Figure 4: SAtool Products

loads the data into the database. This creates obvious problems relative to sharing the data generated by

the tool with other tools since every tool would be required to provide, or convert to, the standard data file

format. One potential solution is to use some type of database management system (DBMS) in conjunction

with the CASE tool, as opposed to the file conversion scheme. The development of an abstract data model

for the IDEFO language is our first step in the development of such a DBMS and in providing a blue-print

for the internal data structures of SAtool.

Our model is based on Chen's entity-relationship (E-R) model [2]. Basically the E-R model depicts

the concepts of entities, relationships between entities, and attributes of entities and relationships. An E-R

diagram based upon an example in Date [4] is shown in Figure 5. We have adapted Chen's E-R methodology

to make things more understandable. In particular, we have added a line on the side of the relationship

which clarifies how it relates to the corresponding entities. For example, Figure 5 would be read as "supplier

supplies parts." Additionally, we have made the cardinality obvious, "supplier supplies zero to many parts,"

and "parts are supplied by one to many suppliers." Finally, we have added an asterisk on the attribute

which serves as the key, e.g., s# is the key attribute for entity, supplier.

7

supplie ltqm :1__

Figure 5: Modified Entity-Relationship Notation

IDEFO
Essential

Data
Model

IDDE~o
Abistract

Data
Model

IDEFO
Drawing

Figure 6: IDEF0 Abstract Data Model: Essential Data and Drawing Data

4 Development of an Abstract Data Model

In order to facilitate development of a DBMS implementation of the IDEFO language, an abstract data model

of the language was constructed. This abstract data model consists of two parts; (1) the essential data model,

and (2) the drawing data model. The concept is illustrated in Figure 6. This dual modeling approach allows

for the extraction of analysis data without having to deal explicitly with the IDEFo language, i.e., without

having to "walk through" the various drawings.

The IDEFO essential data model captures those portions of the language which represent the semantics

of a particular analysis. A given IDEFO analysis could actually be represented by infinitely many drawings.

8

These could differ by as little as the position of a box on the diagram or by the use of optional IDEF0

shorthand graphics symbols such as two related feedback arrows vs. a double-headed arrow. This is similar

to representing a linear system by a list of equations or by a coefficient matrix. Both forms are representations

of the same underlying model. In a similar sense, an IDEFo analysis may be syntactically expressed any

number of ways, yet still convey the same underlying semantical information. It is this underlying "essential"

data which is being captured by the essential data mode]2 . This includes, for example, activities and their

children, as well as data elements. It does not include, for example, the location of the boxes or arrows which

graphically represent the activitie ,id data elements.

The drawing data model represents the graphical constructs used to represent the particular IDEF0

analysis. It contains such information as the location of boxes, the line segments which constitute a given

data element, various graphics artifacts, such as the location of "squiggles," the location of footnote markers,

some of the graphics "short-hand" such as double headed arrows, etc. This drawing data, in conjunction

with the essential data, is used to actually draw an IDEF 0 diagram.

The entity-relationship method is used to analyze both the essential data model and the erawing data

model since it retains many of the semantics of the actual data being modeled.

4.1 Essential Data Model

In order to allow for an understandable, yet complete representation, the E-R analysis of the essential data

model is done in two parts that complement one another. The first portion of the E-R analysis shows the

activity model, with the details about data elements left out. The second portion shows the data element

model while leaving out the details about the activities.

Figure 7 illustrates the essential model associated with IDEF0 activities and Figure 8 illustrates the

essential model associated with IDEF0 data elements. Each of the entities and relationships for both E-R

diagrams is explained in Table 1. Most of the attributes include a reference to show why the given attribute

was necessary.

2This is similar to the concept of an "essential system model" as suggested by Yourdan [10] as defining what the system does
and not hrw it is implemented. Our essential model is also independent of how it is (graphically) represented.

9

~project

O ipt :npart of I:

lmca i szen am

: cnrlled

elmetfctviyndedu

.........

F~m isur 7:n DEm descriptsntiiont M e

mechaniz

..... o.o

project !:ref
: part of...................

0:n :m 0:n

outputs

actvit .data im

:n

.... O isa hv

chan t/

conistsofon

changess

elsewher hlas an

Figure 8: IDE~oDATA ELEMENT pEs eilDtMoe

version 11

Table 1: Description of Components in the Essential Data Model

E-R construct description
activity This entity represents the IDEF0 (SADT) activities; as noted by the aster-sk

on the E-R diagram, node number is the key attribute, and name captures
the name of the given activity [7:13-14]. Attribute, description, allows the
analyst to describe the activity [5:12].

composed of This relationship expresses the fact that a given parent activity is composed
of zero to many (0:m) child activities. It also shows that each activity has
one parent activity. The 0:1 notation accounts for the fact that the A-0
activity may not have a parent activity [5:12].

analyst This entity is used to capture information about the analyst who performed
the analysis. The reason for making analyst an entity, rather than an at-
tribute of activity, is so that it might be tied into a personnel database. The
entity, analyst, currently has the single attribute, author, which identifies
the person who performed the analysis [5:12].

analyzes This relationship expresses the fact that a given analyst analyzes zero to
many activities (or data elements). Note that the current model only al-
lows an activity (or data element) to be analyzed by on(analyst. Attribute,
version, is used to record version information; date indicates when the anal-
ysis was performed; changes allows historical data about a given activity
(or data element) to be captured [5:12].

project This entity identifies the project to which each activity (or data element) is
assigned. Key attribute, project id, is the unique identifier for each project,
and attribute, pname, indicates the name of the project [5:12].

part of This relationship indicates that an activity (or data element) is part of
exactly one project, whereas a project contains one to many activities.

ref This entity captures any references associated with an activity (or data el-
ement). The key attribute, reference, identifies which reference is involved,
and attribute, type, identifies the type of reference [5:12]. Basically, this
entity allows a library of various documents such as DoD standards, user
requirements, contractual clauses, etc., to be tied to the given activity (or
data element).

based on This relationship indicates that a given activity (or data element) is based
on at least one but perhaps many references, and that a given reference is
the basis for from zero to many activities (or data elements).

historical activity This entity is primarily used as a convenience so that the database does not
have to be loaded with analyses which were previously accomplished. The
key attribute, project id, indicates which project contained the historical
activity, and attribute, node number, identifies the specific activity within
the project.

12

Table 1 (continued): Description of Components in the Essential Data Model

E-R construct description
calls This relationship indicates the fact that an activity can call from zero to

many previously completed (historical) activities, and that a given histori-
cal activity is called by at least one but perhaps many activities [9:33].

inputs This relationship indicates that an activity can input zero to many data
elements. Ross' SA (and the IDEF0 subset) only require activities to have
control data elements and output data elements [9:20]. Note that the entity,
data element, is expanded in the next section.

outputs This relationship shows that an activity must have at least one but can
have many output data elements [9:22].

is controlled by This relationship shows that an activity must have at least one but can
have many control data elements [9:22].

is mechanized by This relationship indicates that an activity can have zero to many mecha-
nism data elements. Ross' SA (and the IDEF0 subset) only require activities
to have control data elements and output data elements [9:20].

data element This entity represents the IDEFO data elements; as indicated by the asterisk
on the E-R diagram, attribute, name, is the key [7:14]. Attribute, data
type, indicates the type of data (in the Pascal or Ada sense); attribute,
description, allows the analyst to describe the data element [5:12].

pipe This entity is a specialized data element, as illustrated via the ISA construct
on the E-R diagram. It has no additional attributes, but merely indicates
that the data element is actually a pipe containing at least two other data
elements [9:20].

consists of This relationship shows that a pipe consists of at least two data elements,
and that a data element can be contained within at most one pipe.

atomic data item This entity is also a specialized data element for capturing data that have
atomic values, i.e., are not pipes. It has three attributes, minimum (mini-
mum data value, if applicable), maximum (maximum data value, if appli-
cable), and range (data value range, if applicable) [5:14]. In the case that
none of the attributes are applicable, entity values, as described below,
probably applies.

values This entity is used to accommodate atomic data items which have enumer-
ated values, e.g., color can have values red, blue, and green. The entity has
a single attribute, value [5:14].

can have This relationship ties the atomic data item entity to its corresponding values
entity (if it exists).

alias This entity captures any aliases that a given data element might have. The
key attribute, name, is the name of the alias, attribute, comment, is used
by the analyst to clarify why the alias was needed, and attribute, where
used, indicates where the alias is used [5:14].

has an This relationship shows that a data element can have zero to many aliases,
and that a given alias corresponds to exactly one data element.

13

4.2 Drawing Data Model

As we did for the essential data model, the E-R analysis of the drawing data model is done in two parts that

complement one another. The first portion of the E-R analysis shows the activity model, with the details

about data elements left out. The second portion shows the data element model while leaving out the details

about the activities.

Figure 9 illustrates the drawing model associated with IDEFO activities and Figure 10 illustrates the

drawing model associated with IDEFO data elements. Each of the entities and relationships for both E-R

diagrams is explained in Table 2. As appropriate, a reference is given citing why the entity, relationship, or

attribute was needed.

5 Summary

The aim of CASE methodologies and tools is to formalize and automate the process of software analysis,

design, and implementation so that fewer errors are made and large software problems can be efficiently

worked on. The Air Force's graphical analysis language, (IDEFO), combined with a tool like AFIT's SAtool, is

an excellent methodology for performing a requirements-phase analysis for any software development project.

However, in order to successfully support automated CASE tools, a language must be as unambiguous as

possible, with clearly defined semantics for the elements of the language and their allowed interactions. The

data model presented in this paper helps to mitigate the ambiguities inherent in the IDEF0 language.

We took a dual modeling approach to formalizing the data model for IDEF0 . By dividing the model

into an essential and a drawing data model, we are able to separate the analysis data which is "essential" to

the requirements analysis and the graphical data which is specific to the display tool. This approach allows

the analysis data to be used in an environment that doesn't support or doesn't need the graphical tools of

IDEF0 or used with another graphical tool that supports a similar analysis methodology.

Now that a data model for IDEF0 exists, we are investigating its implementation within some type of

DBMS. Both relational and nested relational [1] databases are being explored. As this model is difficult to

fit into the traditional relational database model, we are interested in seeing if the newer data models will

provide a more convenient and efficient database design and implementation.

14

actviy rprsenedbo

byy

Figure be *nIE0 ATVTYDaigDt odenmb

0:1 gaphic

........ °........ ..

°°

Figueg 0: dr~ AAEEEN rwn awnde

on

Table 2: Description of Components in the Drawing Data Model

E-R construct description
box This entity captures the graphical construct, box, which is used to represent

an activity on the IDEFO diagram. The key attribute, node number, ties
the box to a specific activity, attributes, z, and y, indicate the location of
the upper left hand corner of the box (all boxes are the same size). The
attribute, visible DRE, corresponds to Ross' detail reference expression. In
Ross' words "The omission of a detail reference expression indicates that the
box is not further detailed in this model" [9:33]. Accordingly, if the activity
being represented by the box is further decomposed then attribute, visible
DRE, is set to "true."

is represented by This relationship simply indicates the one to one correspondence between
an activity and its graphical representation, box.

activity This entity is described in the section dealing with the essential data model.

sheet This entity captures the fact that an activity is decomposed. It has the
single attribute, c-number [7:17]. Note that c-number is used as the DRE
symbol on the parent diagram.

is decomposed on This relationship ties an activity to the sheet upon which it is decomposed,
if such a decomposition exists.

graphics artifact This is a generalized IDEF0 entity which includes notes and squiggles [9:20].
It contains the single key attribute, graf-id.

contains This relationship indicates that a given sheet can contain zero to many
graphics artifacts.

note This entity is used to capture the location of note markers, and it is the
generalized entity for both text notes (footnotes and meta-notes) , and
FEO [9:20]. There are two attributes, z, and y, which indicate the location
of the note marker on the diagram.

squiggle This entity simply contains the four ordered pairs which denote the location
of a squiggle on the sheet [9:20].

text This entity, which is a member of entity, note, as seen from the ISA con-
struct on the E-R diagram, captures the text for meta-notes and footnotes.
Attribute, contents, holds the text of the note and the ISA construct indi-
cates the type of note, i.e., footnote or meta-note [9:20].

FEO This entity, which is a member of entity, note, as seen from the ISA con-
struct on the E-R diagram, captures the drawings associated with the for
exposition only (FEO) [9:22).

footnote This entity is a specialized type of text note as seen from the ISA construct
on the E-R diagram. Attributes z, and y, are the location on the drawing
where the footnote is placed.

meta-note This entity is a specialized type of text note as seen from the ISA construct
on the E-R diagram.

label This entity captures the label associated with a data element (the label
may be the same as the data element name), as well as the location of the
label on the diagram. Attribute, label, is the key, and attributes, z, and y,
are the location of the first character of the label.

17

Table 2 (continued): Description of Components in the Drawing Data Model

E-R construct description
corresponds to This relationship connects a data item to it's label. A data item can have

zero to many labels, but a given label can only refer to one data element.
data element This entity is described in the section dealing with the essential data model.
line segment This entity captures all the line segments from which the graphical repre-

sentation of a data item is built. Attribute, seg id, is the key.
is built from This relationship simply indicates that a data element is graphically repre-

sented by at least one but perhaps many line segments.

is drawn on This relationship indicates the sheet on which a particular line segment is
drawn. It also indicates that a sheet can have one to many line segments
drawn on it.

symbol This generalized entity is used to capture the type of symbol with which
a line segment either starts or ends. Key attribute, symbol id, provides a
unique identifier for each symbol.

starts with This relationship connects a line segment to the symbol with which the
line segment starts. The two attributes, z, and y, are the location of the
starting symbol. Note that a line segment can start with more than one
symbol, e.g., an arrow and a dot.

ends with This relationship connects a line segment to the symbol with which the line
segment ends. The two attributes, z, and y, are the location of the ending
symbol. Note that a line segment can end with more than one symbol, e.g.,
a boundary arrow.

boundary This entity indicates that the starting or ending symbol on the line segment
corresponds to a boundary. Attribute, type, indicates the type of boundary
(Input, Control, Output, and Mechanism), and attribute, number, is the
number of the boundary [7:22].

all This entity captures the to-all and from-all conLruct; the single attribute,
label, captures the to-all/from-all label [9:31-32].

tunnel This entity denotes that the line segment corresponds to a tunnel arrow; the
attribute, type, indicates if this is an external arrow that did not appear
on the parent diagram (hidden source), or if it is an arrow that touches
an activity but does not appear on that activity's decomposition (hidden
destination) [7:24].

turn This entity is used if the line segment starts or ends with a turn. Attribute,
type, determines the type of turn (right-up, left-up, right-down, left-down,
up-right, up-left, down-right, and down-left).

arrow This entity is used if the line segment starts or ends with an arrow. At-
tribute type determines the type of arrow (right, left, up, and down).

dot This entity is used in the case of two-way arrows [9:20].

null This entity is used if the line segment does not have a starting or ending
symbol, e.g., the segment simply connects to another segment and therefore
does not have a starting symbol.

18

6 Acknowledgment

K. Austin and N. Smith provided much appreciated input into the initial formulation of the E-R model

presented in this paper.

References

[1] ABITEBOUL, S., FISCHER, P. C., AND SCHEK, H.-J., Eds. Workshop on Nested Relations and Complex

Objects (Darmstadt, West Germany, 1989), vol. 361 of Lecture Notes in Computer Science, Springer-

Verlag, Berlin, West Germany.

[2] CHEN, P. P.-S. The entity-relationship model-toward a unified view of data. ACM Transactions on

Database Systems 1, 1 (1976), 9-36.

[3] CONNALLY, T. D. Common database interface for heterogeneous software engineering tools. Master's

thesis, Air Force Institute of Technology, December 1987. AFIT/GCS/ENG/87D-8.

[4] DATE, C. J. An Introduction to Database Systems. Addison-Wesley Publishing Company, 1981.

[51 HARTRUM, T. C. System Development Documentation Guidelines and Standards, draft 4 ed. Depart-

ment of Electrical and Computer Engineering, Air Force Institute of Technology, January 2 1989.

[6] JOHNSON, S. E. A graphics editor for structured analysis with a data dictionary. Master's thesis, Air

Force Institute of Technology, December 1987. AFIT/GE/ENG/87D-28.

[7] MARCA, D. A., AND McGOWAN, C. L. SADT Structured Analysis and Design Technique. McGraw-

Hill Book Company, 1988.

[8] MATERIALS LABORATORY, WRIGHT RESEARCH AND DEVELOPMENT CENTER. Integrated Computer.

Aided Manufacturing (ICAM) Function Modeling Manual (IDEFo), report no. UM 110231100 ed. Air

Force Systems Command, Wright-Patterson AFB, OH 45433, June 1981. Contract F33615-78-C-5158.

[9] Ross, D. T. Structured analysis (SA): A language for communicating ideas. IEEE Transactions on

Software Engineering SE-3, 1 (January 1976), 16-34.

[10] YOURDON, E. Modern Structured Analysis. Prentice Hall, Englewood Cliffs, 1989.

19

